当前位置:首页 > 数码 > 即刻优化系统性能-速度翻倍!-Redis管道技术 (即刻优化系统有什么用)

即刻优化系统性能-速度翻倍!-Redis管道技术 (即刻优化系统有什么用)

admin8个月前 (05-12)数码20

环境:SpringBoot2.6.12+6

Redis是一种基于客户端-服务端模型以及恳求/照应协定的TCP服务。这象征着通常状况下一个恳求会遵照以下步骤:

Redis管道技术

Redis管道技术是一种批处置技术,用于一次性性处置多个Redis命令,从而提高整个交互的性能。通常状况下,Redis是单行口头的,当客户端向主机发送恳求时,服务端接纳并处置恳求后再把结果前往给客户端。但是,当产生集中大量量的恳求时,每个恳求都须要教训先恳求再照应的环节,这会形成网络资源糜费。此时,管道技术应运而生,它把一切的命令整合一次性发给服务端,再一次性照应给客户端,从而大大提高了Redis的照应速度。

Redis普通恳求模型与管道恳求模型对比

(普通恳求模型)起源网络

RTT(Round-TripTime),就是往复时延,在计算机网络中它是一个关键的性能目的,示意从发送端发送数据开局,到发送端收来到自接纳端确实认(接纳端收到数据后便立刻发送确认),总共教训的时延。

普通以为,单向时延=传输时延t1+流传时延t2+排队时延t3

(管道恳求模型)起源网络

性能对比

依赖

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><groupId>org..commons</groupId><artifactId>commons-pool2</artifactId></dependency>
Redis管道技术

性能文件

spring:redis:host:localhostport:6379pass:******>@ResourceprivateStringRedisTemplatestringRedisTemplate;publicvoidexecNormal(){longstart=System.currentTimeMillis();for(inti=0;i<100_000;i++){stringRedisTemplate.opsForValue().set("k"+i,"v"+i);}System.out.println("耗时:"+(System.currentTimeMillis()-start)+"ms");}

测试结果

总耗时:47秒左右

管道技术

publicvoidexecPipeline(){longstart=System.currentTimeMillis();stringRedisTemplate.executePipelined(newRedisCallback<Object>(){@OverridepublicObjectdoInRedis(RedisConnectionconnection)throws/>

耗时:13秒左右,性能优化了3倍多。


Redis常见延迟问题排查手册!附33条优化建议

Redis作为内存数据库,拥有非常高的性能,单个实例的QPS能够达到10W左右。但我们在使用Redis时,经常时不时会出现访问延迟很大的情况,如果你不知道Redis的内部实现原理,在排查问题时就会一头雾水。

很多时候,Redis出现访问延迟变大,都与我们的使用不当或运维不合理导致的。

下面我们就来分析一下Redis在使用过程中,经常会遇到的延迟问题以及如何定位和分析。

如果在使用Redis时,发现访问延迟突然增大,如何进行排查?

首先,第一步,建议你去查看一下Redis的慢日志。Redis提供了慢日志命令的统计功能,我们通过以下设置,就可以查看有哪些命令在执行时延迟比较大。

首先设置Redis的慢日志阈值,只有超过阈值的命令才会被记录,这里的单位是微妙,例如设置慢日志的阈值为5毫秒,同时设置只保留最近1000条慢日志记录:

# 命令执行超过5毫秒记录慢日志

CONFIG SET slowlog-log-slower-than 5000

# 只保留最近1000条慢日志

CONFIG SET slowlog-max-len 1000

设置完成之后,所有执行的命令如果延迟大于5毫秒,都会被Redis记录下来,我们执行SLOWLOG get 5查询最近5条慢日志:

127.0.0.1:6379> SLOWLOG get 5

1) 1) (integer) # 慢日志ID

2) (integer) # 执行时间

3) (integer) 5299 # 执行耗时(微妙)

4) 1) LRANGE # 具体执行的命令和参数

2) user_list_2000

2) 1) (integer)

2) (integer)

3) (integer) 5044

2) book_price_1000

通过查看慢日志记录,我们就可以知道在什么时间执行哪些命令比较耗时, 如果你的业务经常使用O(n)以上复杂度的命令, 例如sort、sunion、zunionstore,或者在执行O(n)命令时操作的数据量比较大,这些情况下Redis处理数据时就会很耗时。

如果你的服务请求量并不大,但Redis实例的CPU使用率很高,很有可能是使用了复杂度高的命令导致的。

解决方案就是,不使用这些复杂度较高的命令,并且一次不要获取太多的数据,每次尽量操作少量的数据,让Redis可以及时处理返回。

如果查询慢日志发现,并不是复杂度较高的命令导致的,例如都是SET、DELETE操作出现在慢日志记录中,那么你就要怀疑是否存在Redis写入了大key的情况。

Redis在写入数据时,需要为新的数据分配内存,当从Redis中删除数据时,它会释放对应的内存空间。

如果一个key写入的数据非常大,Redis 在分配内存时也会比较耗时。 同样的,当删除这个key的数据时, 释放内存也会耗时比较久。

你需要检查你的业务代码,是否存在写入大key的情况,需要评估写入数据量的大小,业务层应该避免一个key存入过大的数据量。

那么有没有什么办法可以扫描现在Redis中是否存在大key的数据吗?

Redis也提供了扫描大key的方法:

redis-cli -h $host -p $port --bigkeys -i 0.01

使用上面的命令就可以扫描出整个实例key大小的分布情况,它是以类型维度来展示的。

需要注意的是当我们在线上实例进行大key扫描时,Redis的QPS会突增,为了降低扫描过程中对Redis的影响,我们需要控制扫描的频率,使用-i参数控制即可,它表示扫描过程中每次扫描的时间间隔,单位是秒。

使用这个命令的原理,其实就是Redis在内部执行scan命令,遍历所有key,然后针对不同类型的key执行strlen、llen、hlen、scard、zcard来获取字符串的长度以及容器类型(list/dict/set/zset)的元素个数。

而对于容器类型的key,只能扫描出元素最多的key,但元素最多的key不一定占用内存最多,这一点需要我们注意下。不过使用这个命令一般我们是可以对整个实例中key的分布情况有比较清晰的了解。

针对大key的问题,Redis官方在4.0版本推出了lazy-free的机制,用于异步释放大key的内存,降低对Redis性能的影响。即使这样,我们也不建议使用大key,大key在集群的迁移过程中,也会影响到迁移的性能,这个后面在介绍集群相关的文章时,会再详细介绍到。

有时你会发现,平时在使用Redis时没有延时比较大的情况,但在某个时间点突然出现一波延时,而且 报慢的时间点很有规律,例如某个整点,或者间隔多久就会发生一次。

如果出现这种情况,就需要考虑是否存在大量key集中过期的情况。

如果有大量的key在某个固定时间点集中过期,在这个时间点访问Redis时,就有可能导致延迟增加。

Redis的过期策略采用主动过期+懒惰过期两种策略:

注意, Redis的主动过期的定时任务,也是在Redis主线程中执行的 ,也就是说如果在执行主动过期的过程中,出现了需要大量删除过期key的情况,那么在业务访问时,必须等这个过期任务执行结束,才可以处理业务请求。此时就会出现,业务访问延时增大的问题,最大延迟为25毫秒。

而且这个访问延迟的情况, 不会记录在慢日志里。 慢日志中 只记录真正执行某个命令的耗时 ,Redis主动过期策略执行在操作命令之前,如果操作命令耗时达不到慢日志阈值,它是不会计算在慢日志统计中的,但我们的业务却感到了延迟增大。

此时你需要检查你的业务,是否真的存在集中过期的代码,一般集中过期使用的命令是expireat或pexpireat命令,在代码中搜索这个关键字就可以了。

如果你的业务确实需要集中过期掉某些key,又不想导致Redis发生抖动,有什么优化方案?

解决方案是, 在集中过期时增加一个随机时间,把这些需要过期的key的时间打散即可。

伪代码可以这么写:

# 在过期时间点之后的5分钟内随机过期掉

(key, expire_time + random(300))

这样Redis在处理过期时,不会因为集中删除key导致压力过大,阻塞主线程。

另外,除了业务使用需要注意此问题之外,还可以通过运维手段来及时发现这种情况。

我们需要对这个指标监控,当在 很短时间内这个指标出现突增 时,需要及时报警出来,然后与业务报慢的时间点对比分析,确认时间是否一致,如果一致,则可以认为确实是因为这个原因导致的延迟增大。

有时我们把Redis当做纯缓存使用,就会给实例设置一个内存上限maxmemory,然后开启LRU淘汰策略。

当实例的内存达到了maxmemory后,你会发现之后的每次写入新的数据,有可能变慢了。

导致变慢的原因是,当Redis内存达到maxmemory后,每次写入新的数据之前,必须先踢出一部分数据,让内存维持在maxmemory之下。

这个踢出旧数据的逻辑也是需要消耗时间的,而具体耗时的长短,要取决于配置的淘汰策略:

具体使用哪种策略,需要根据业务场景来决定。

我们最常使用的一般是allkeys-lru或volatile-lru策略,它们的处理逻辑是,每次从实例中随机取出一批key(可配置),然后淘汰一个最少访问的key,之后把剩下的key暂存到一个池子中,继续随机取出一批key,并与之前池子中的key比较,再淘汰一个最少访问的key。以此循环,直到内存降到maxmemory之下。

如果使用的是allkeys-random或volatile-random策略,那么就会快很多,因为是随机淘汰,那么就少了比较key访问频率时间的消耗了,随机拿出一批key后直接淘汰即可,因此这个策略要比上面的LRU策略执行快一些。

但以上这些逻辑都是在访问Redis时,真正命令执行之前执行的,也就是它会影响我们访问Redis时执行的命令。

另外,如果此时Redis实例中有存储大key,那么在淘汰大key释放内存时,这个耗时会更加久,延迟更大,这需要我们格外注意。

如果你的业务访问量非常大,并且必须设置maxmemory限制实例的内存上限,同时面临淘汰key导致延迟增大的的情况,要想缓解这种情况,除了上面说的避免存储大key、使用随机淘汰策略之外,也可以考虑拆分实例的方法来缓解,拆分实例可以把一个实例淘汰key的压力分摊到多个实例上,可以在一定程度降低延迟。

如果你的Redis开启了自动生成RDB和AOF重写功能,那么有可能在后台生成RDB和AOF重写时导致Redis的访问延迟增大,而等这些任务执行完毕后,延迟情况消失。

遇到这种情况,一般就是执行生成RDB和AOF重写任务导致的。

生成RDB和AOF都需要父进程fork出一个子进程进行数据的持久化,在fork执行过程中,父进程需要拷贝内存页表给子进程,如果整个实例内存占用很大,那么需要拷贝的内存页表会比较耗时,此过程会消耗大量的CPU资源,在完成fork之前,整个实例会被阻塞住,无法处理任何请求,如果此时CPU资源紧张,那么fork的时间会更长,甚至达到秒级。这会严重影响Redis的性能。

具体原理也可以参考我之前写的文章:Redis持久化是如何做的?RDB和AOF对比分析。

我们可以执行info命令,查看最后一次fork执行的耗时latest_fork_usec,单位微妙。这个时间就是整个实例阻塞无法处理请求的时间。

除了因为备份的原因生成RDB之外,在 主从节点第一次建立数据同步时 ,主节点也会生成RDB文件给从节点进行一次全量同步,这时也会对Redis产生性能影响。

要想避免这种情况,我们需要规划好数据备份的周期,建议 在从节点上执行备份,而且最好放在低峰期执行。 如果对于丢失数据不敏感的业务,那么不建议开启AOF和AOF重写功能。

另外,fork的耗时也与系统有关,如果把Redis部署在虚拟机上,那么这个时间也会增大。所以使用Redis时建议部署在物理机上,降低fork的影响。

很多时候,我们在部署服务时,为了提高性能,降低程序在使用多个CPU时上下文切换的性能损耗,一般会采用进程绑定CPU的操作。

但在使用Redis时,我们不建议这么干,原因如下。

绑定CPU的Redis,在进行数据持久化时,fork出的子进程,子进程会继承父进程的CPU使用偏好,而此时子进程会消耗大量的CPU资源进行数据持久化,子进程会与主进程发生CPU争抢,这也会导致主进程的CPU资源不足访问延迟增大。

所以在部署Redis进程时,如果需要开启RDB和AOF重写机制,一定不能进行CPU绑定操作!

上面提到了,当执行AOF文件重写时会因为fork执行耗时导致Redis延迟增大,除了这个之外,如果开启AOF机制,设置的策略不合理,也会导致性能问题。

开启AOF后,Redis会把写入的命令实时写入到文件中,但写入文件的过程是先写入内存,等内存中的数据超过一定阈值或达到一定时间后,内存中的内容才会被真正写入到磁盘中。

AOF为了保证文件写入磁盘的安全性,提供了3种刷盘机制:

当使用第一种机制appendfsync always时,Redis每处理一次写命令,都会把这个命令写入磁盘,而且 这个操作是在主线程中执行的。

内存中的的数据写入磁盘,这个会加重磁盘的IO负担,操作磁盘成本要比操作内存的代价大得多。如果写入量很大,那么每次更新都会写入磁盘,此时机器的磁盘IO就会非常高,拖慢Redis的性能,因此我们不建议使用这种机制。

与第一种机制对比,appendfsync everysec会每隔1秒刷盘,而appendfsync no取决于操作系统的刷盘时间,安全性不高。因此我们推荐使用appendfsync everysec这种方式,在最坏的情况下,只会丢失1秒的数据,但它能保持较好的访问性能。

当然,对于有些业务场景,对丢失数据并不敏感,也可以不开启AOF。

如果你发现Redis突然变得非常慢, 每次访问的耗时都达到了几百毫秒甚至秒级 ,那此时就检查Redis是否使用到了Swap,这种情况下Redis基本上已经无法提供高性能的服务。

我们知道,操作系统提供了Swap机制,目的是为了当内存不足时,可以把一部分内存中的数据换到磁盘上,以达到对内存使用的缓冲。

但当内存中的数据被换到磁盘上后,访问这些数据就需要从磁盘中读取,这个速度要比内存慢太多!

尤其是针对Redis这种高性能的内存数据库来说,如果Redis中的内存被换到磁盘上,对于Redis这种性能极其敏感的数据库,这个操作时间是无法接受的。

我们需要检查机器的内存使用情况,确认是否确实是因为内存不足导致使用到了Swap。

如果确实使用到了Swap,要及时整理内存空间,释放出足够的内存供Redis使用,然后释放Redis的Swap,让Redis重新使用内存。

释放Redis的Swap过程通常要重启实例,为了避免重启实例对业务的影响,一般先进行主从切换,然后释放旧主节点的Swap,重新启动服务,待数据同步完成后,再切换回主节点即可。

可见,当Redis使用到Swap后,此时的Redis的高性能基本被废掉,所以我们需要提前预防这种情况。

我们需要对Redis机器的内存和Swap使用情况进行监控,在内存不足和使用到Swap时及时报警出来,及时进行相应的处理。

如果以上产生性能问题的场景,你都规避掉了,而且Redis也稳定运行了很长时间,但在某个时间点之后开始,访问Redis开始变慢了,而且一直持续到现在,这种情况是什么原因导致的?

之前我们就遇到这种问题, 特点就是从某个时间点之后就开始变慢,并且一直持续。 这时你需要检查一下机器的网卡流量,是否存在网卡流量被跑满的情况。

网卡负载过高,在网络层和TCP层就会出现数据发送延迟、数据丢包等情况。Redis的高性能除了内存之外,就在于网络IO,请求量突增会导致网卡负载变高。

如果出现这种情况,你需要排查这个机器上的哪个Redis实例的流量过大占满了网络带宽,然后确认流量突增是否属于业务正常情况,如果属于那就需要及时扩容或迁移实例,避免这个机器的其他实例受到影响。

运维层面,我们需要对机器的各项指标增加监控,包括网络流量,在达到阈值时提前报警,及时与业务确认并扩容。

以上我们总结了Redis中常见的可能导致延迟增大甚至阻塞的场景,这其中既涉及到了业务的使用问题,也涉及到Redis的运维问题。

可见,要想保证Redis高性能的运行,其中涉及到CPU、内存、网络,甚至磁盘的方方面面,其中还包括操作系统的相关特性的使用。

作为开发人员,我们需要了解Redis的运行机制,例如各个命令的执行时间复杂度、数据过期策略、数据淘汰策略等,使用合理的命令,并结合业务场景进行优化。

作为DBA运维人员,需要了解数据持久化、操作系统fork原理、Swap机制等,并对Redis的容量进行合理规划,预留足够的机器资源,对机器做好完善的监控,才能保证Redis的稳定运行。

在上文中,主要讲解了 Redis 常见的导致变慢的场景以及问题定位和分析,主要是由业务使用不合理和运维不当导致的。

怎样优化电脑性能,提升运行速度4?

1. 清理不必要的文件和程序:删除不必要的文件和程序可以释放硬盘空间,提高系统的运行速度。 2. 关闭不必要的服务和进程:在任务管理器中可以关闭不必要的服务和进程,以释放系统的资源,提高系统的性能。 3. 定期进行系统维护:保持系统的干净、整洁可以提升电脑的运行速度。 可以使用系统优化工具来进行清理、修复和优化操作。 4. 更新和升级驱动程序:及时修正错误和不足之处、提高设备的稳定性和速度,驱动程序对电脑性能的影响非常大。 5. 增加内存或升级硬件:内存越大,计算机运行速度越快,硬件配置越高,电脑性能也越好。 如果你的电脑运行缓慢且已经尝试了其他优化方法,考虑升级硬件或增加内存。

免责声明:本文转载或采集自网络,版权归原作者所有。本网站刊发此文旨在传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及版权、内容等问题,请联系本网,我们将在第一时间删除。同时,本网站不对所刊发内容的准确性、真实性、完整性、及时性、原创性等进行保证,请读者仅作参考,并请自行核实相关内容。对于因使用或依赖本文内容所产生的任何直接或间接损失,本网站不承担任何责任。

标签: Redis

“即刻优化系统性能-速度翻倍!-Redis管道技术 (即刻优化系统有什么用)” 的相关文章

Redis数据删除后-内存占用为何居高不下 (redis数据类型)

Redis数据删除后-内存占用为何居高不下 (redis数据类型)

作为面试经验丰富的开发人员,肯定会遇到过这样的问题:做了数据删除操作,为什么使用 top 命令时,仍然显示 Redis 占用了大量内存? 答案 这是因为当数据删除后,Re...

一站式-满足您的所有-解决方案-需求-Redis-Redis (一站式满足您的资金需求让您用款无忧)

一站式-满足您的所有-解决方案-需求-Redis-Redis (一站式满足您的资金需求让您用款无忧)

Introduction Redis is an efficient in-memory database designed to store data invarious formats, s...

大厂Redis重试战略剖析-深化摸索行业通常 (大厂redis面试题)

大厂Redis重试战略剖析-深化摸索行业通常 (大厂redis面试题)

受网络和运转环境影响,运行程序或许遇到临时性缺点,如刹时网络颤抖、服务临时无法用、服务忙碌造成超时等。 智能重试机制可大幅防止此类缺点,保证操作成功口头。 1引发临时性缺点的要素...

安装并配置-Kubernetes-集群 (安装并配置mysql的实验总结)

安装并配置-Kubernetes-集群 (安装并配置mysql的实验总结)

日常开发中,基于自然支持散布式锁,大家在线上散布式名目中都经常使用过Redis锁。本文重要针对日常开发中加锁环节中某些意外场景启动解说与剖析。本文解说示例代码都在名目目录下 RedisLo...

Redis中分布式锁的防死锁机制 (redis中文网)

Redis中分布式锁的防死锁机制 (redis中文网)

分布式锁在分布式系统中是一种常见的需求。它用于防止对共享资源的并发访问,确保数据一致性和可靠性。在 Redis 中实现分布式锁可以通过使用 SETNX(SET if Not eXists)命令来尝...

排查与处置指南-Redis大Key危害 (排查与处置指的是什么)

排查与处置指南-Redis大Key危害 (排查与处置指的是什么)

这是一位同窗往年秋招参与得物一面遇到的疑问,完整面经如下: 这个疑问在面试中还是比拟容易遇到的,尤其是在调查性能优化相关常识点的时刻。 通常状况下,问了bigkey(大Key)还会继续...

Redis-使用哈希槽而非一致性哈希的原因 (redis淘汰策略有哪些)

Redis-使用哈希槽而非一致性哈希的原因 (redis淘汰策略有哪些)

引言 在分布式系统中,数据分片和负载均衡是至关重要的。哈希槽和一致性哈希两种方法都可以实现这些目标,但它们各有优缺点。本文将讨论为什么在某些情况下使用哈希槽而不是一致性哈希。 哈希槽 哈希...

引发业界震荡-Redis叛逃开源-得罪了 (引发业界震荡的因素)

引发业界震荡-Redis叛逃开源-得罪了 (引发业界震荡的因素)

Redis 许可变更:开源界的巨石 导言 近来,内存数据库供应商 Redis 宣布了一项重大变更,该变更将在开源界掀起轩然大波。Redis 将转向双许可模式,并采用更严格的许可条款。此举引起了社区...