Redis中分布式锁的防死锁机制 (redis中文网)
分布式锁在分布式系统中是一种常见的需求。它用于防止对共享资源的并发访问,确保数据一致性和可靠性。在 Redis 中实现分布式锁可以通过使用 SETNX(SET if Not eXists)命令来尝试获取锁,然后使用 DEL 命令释放锁。
Redis 分布式锁的基本实现
- 使用 SETNX 命令尝试获取锁,成功则获取锁,失败则说明锁已被其他节点持有。
- 设置锁的过期时间,防止锁过期后无法释放导致死锁。
- 使用 DEL 命令释放锁。
Redlock 算法的原理
Redlock 算法是一种基于多个独立 Redis 实例的分布式锁实现方案。它通过协调多个 Redis 实例之间的锁竞争来确保分布式环境下的可靠性。Redlock 算法的基本原理如下: 1. 客户端同时向多个 Redis 实例发送获取锁的请求。 2. 每个 Redis 实例独立评估请求,并返回一个随机的延迟时间。 3. 客户端收集所有 Redis 实例返回的延迟时间,并选择最短的延迟时间。 4. 客户端再次向所有 Redis 实例发送获取锁的请求,并设置锁的过期时间为最短延迟时间的两倍。 5. 如果客户端成功获取了超过半数的 Redis 实例的锁,则认为成功获取分布式锁。 6. 客户端释放锁时,向所有持有锁的 Redis 实例发送释放锁的请求。Redlock 算法的防死锁机制
Redlock 算法通过在多个 Redis 实例上进行加锁和解锁操作,来降低死锁的可能性。其防死锁机制主要包括以下几点: 1. 容错性:Redlock 算法要求超过半数的 Redis 实例成功获取锁才能认为分布式锁成功获取,这提高了系统的容错性。 2.随机延迟:Redlock 算法使用随机延迟时间来避免多个客户端同时尝试获取锁而导致死锁。 3. 锁过期时间:Redlock 算法设置锁的过期时间,以防止锁过期后无法释放导致死锁。使用 Redlock 算法实现分布式锁
在 Redis 中使用 Redlock 算法实现分布式锁需要以下步骤: 1. 创建多个 Redis 实例。 2. 客户端向所有 Redis 实例发送获取锁的请求。 3. 客户端收集所有 Redis 实例返回的延迟时间,并选择最短的延迟时间。 4. 客户端再次向所有 Redis 实例发送获取锁的请求,并设置锁的过期时间为最短延迟时间的两倍。 5. 如果客户端成功获取了超过半数的 Redis 实例的锁,则认为成功获取分布式锁。 6. 客户端释放锁时,向所有持有锁的 Redis 实例发送释放锁的请求。注意事项
需要注意的是,Redlock 算法并不是绝对安全的,仍然可能存在极端情况下的死锁问题。因此,在实际应用中需要根据具体场景做出适当的调整和优化。结论
在 Redis 中使用 Redlock 算法实现分布式锁是一种行之有效的方案。它提供了较高的可靠性和防死锁能力,可以有效保障分布式环境下的数据一致性和可靠性。分布式锁的三种实现方式
分布式锁的三种实现方式分别是:基于数据库实现分布式锁、基于缓存(Redis等)实现分布式锁、基于Zookeeper实现分布式锁。
一、基于数据库实现分布式锁
1、悲观锁
利用select … where … for update 排他锁。
注意:其他附加功能与实现一基本一致,这里需要注意的是“where name=lock ”,name字段必须要走索引,否则会锁表。有些情况下,比如表不大,mysql优化器会不走这个索引,导致锁表问题。
2、乐观锁
所谓乐观锁与前边最大区别在于基于CAS思想,是不具有互斥性,不会产生锁等待而消耗资源,操作过程中认为不存在并发冲突,只有update version失败后才能觉察到,抢购和秒杀就是用了这种实现以防止超卖,通过增加递增的版本号字段实现乐观锁。
二、基于缓存(Redis等)实现分布式锁
1、使用命令介绍:
SETNX key val:当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。
expire key timeout:为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。
delete key:删除key
在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。
2、实现思想:
(1)获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。
(2)获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
(3)释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。
三、基于Zookeeper实现分布式锁
ZooKeeper是一个为分布式应用提供一致性服务的开源组件,它内部是一个分层的文件系统目录树结构,规定同一个目录下只能有一个唯一文件名。
基于ZooKeeper实现分布式锁的步骤如下:
(1)创建一个目录mylock。
(2)线程A想获取锁就在mylock目录下创建临时顺序节点。
(3)获取mylock目录下所有的子节点,然后获取比自己小的兄弟节点,如果不存在,则说明当前线程顺序号最小,获得锁。
(4)线程B获取所有节点,判断自己不是最小节点,设置监听比自己次小的节点。
(5)线程A处理完,删除自己的节点,线程B监听到变更事件,判断自己是不是最小的节点,如果是则获得锁。
扩展资料;
一、数据库分布式锁实现的缺点:
1、db操作性能较差,并且有锁表的风险。
2、非阻塞操作失败后,需要轮询,占用cpu资源。
3、长时间不commit或者长时间轮询,可能会占用较多连接资源。
二、Redis(缓存)分布式锁实现的缺点:
1、锁删除失败,过期时间不好控制。
2、非阻塞,操作失败后,需要轮询,占用cpu资源。
三、ZK分布式锁实现的缺点:
性能不如redis实现,主要原因是写操作(获取锁释放锁)都需要在Leader上执行,然后同步到follower。
使用redis实现的分布式锁原理是什么?
一、写在前面
现在面试,一般都会聊聊分布式系统这块的东西。通常面试官都会从服务框架(Spring Cloud、Dubbo)聊起,一路聊到分布式事务、分布式锁、ZooKeeper等知识。
所以咱们这篇文章就来聊聊分布式锁这块知识,具体的来看看Redis分布式锁的实现原理。
说实话,如果在公司里落地生产环境用分布式锁的时候,一定是会用开源类库的,比如Redis分布式锁,一般就是用Redisson框架就好了,非常的简便易用。
大家如果有兴趣,可以去看看Redisson的官网,看看如何在项目中引入Redisson的依赖,然后基于Redis实现分布式锁的加锁与释放锁。
下面给大家看一段简单的使用代码片段,先直观的感受一下:
怎么样,上面那段代码,是不是感觉简单的不行!
此外,人家还支持redis单实例、redis哨兵、redis cluster、redis master-slave等各种部署架构,都可以给你完美实现。
二、Redisson实现Redis分布式锁的底层原理
好的,接下来就通过一张手绘图,给大家说说Redisson这个开源框架对Redis分布式锁的实现原理。
(1)加锁机制
咱们来看上面那张图,现在某个客户端要加锁。如果该客户端面对的是一个redis cluster集群,他首先会根据hash节点选择一台机器。
这里注意,仅仅只是选择一台机器!这点很关键!
紧接着,就会发送一段lua脚本到redis上,那段lua脚本如下所示:
为啥要用lua脚本呢?
因为一大坨复杂的业务逻辑,可以通过封装在lua脚本中发送给redis,保证这段复杂业务逻辑执行的原子性。
那么,这段lua脚本是什么意思呢?
KEYS[1]代表的是你加锁的那个key,比如说:
RLock lock = (myLock);
这里你自己设置了加锁的那个锁key就是“myLock”。
ARGV[1]代表的就是锁key的默认生存时间,默认30秒。
ARGV[2]代表的是加锁的客户端的ID,类似于下面这样:
8743c9c0-0795-4907-87fd-6c719a6b4586:1
给大家解释一下,第一段if判断语句,就是用“exists myLock”命令判断一下,如果你要加锁的那个锁key不存在的话,你就进行加锁。
如何加锁呢?很简单,用下面的命令:
hset myLock
8743c9c0-0795-4907-87fd-6c719a6b4586:1 1
通过这个命令设置一个hash数据结构,这行命令执行后,会出现一个类似下面的数据结构:
上述就代表“8743c9c0-0795-4907-87fd-6c719a6b4586:1”这个客户端对“myLock”这个锁key完成了加锁。
接着会执行“pexpire myLock ”命令,设置myLock这个锁key的生存时间是30秒。
好了,到此为止,ok,加锁完成了。
(2)锁互斥机制
那么在这个时候,如果客户端2来尝试加锁,执行了同样的一段lua脚本,会咋样呢?
很简单,第一个if判断会执行“exists myLock”,发现myLock这个锁key已经存在了。
接着第二个if判断,判断一下,myLock锁key的hash数据结构中,是否包含客户端2的ID,但是明显不是的,因为那里包含的是客户端1的ID。
所以,客户端2会获取到pttl myLock返回的一个数字,这个数字代表了myLock这个锁key的剩余生存时间。比如还剩毫秒的生存时间。
此时客户端2会进入一个while循环,不停的尝试加锁。
(3)watch dog自动延期机制
客户端1加锁的锁key默认生存时间才30秒,如果超过了30秒,客户端1还想一直持有这把锁,怎么办呢?
简单!只要客户端1一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下,如果客户端1还持有锁key,那么就会不断的延长锁key的生存时间。
(4)可重入加锁机制
那如果客户端1都已经持有了这把锁了,结果可重入的加锁会怎么样呢?
比如下面这种代码:
这时我们来分析一下上面那段lua脚本。
第一个if判断肯定不成立,“exists myLock”会显示锁key已经存在了。
第二个if判断会成立,因为myLock的hash数据结构中包含的那个ID,就是客户端1的那个ID,也就是“8743c9c0-0795-4907-87fd-6c719a6b4586:1”
此时就会执行可重入加锁的逻辑,他会用:
incrby myLock
8743c9c0-0795-4907-87fd-6c71a6b4586:1 1
通过这个命令,对客户端1的加锁次数,累加1。
此时myLock数据结构变为下面这样:
大家看到了吧,那个myLock的hash数据结构中的那个客户端ID,就对应着加锁的次数
(5)释放锁机制
如果执行(),就可以释放分布式锁,此时的业务逻辑也是非常简单的。
其实说白了,就是每次都对myLock数据结构中的那个加锁次数减1。
如果发现加锁次数是0了,说明这个客户端已经不再持有锁了,此时就会用:
“del myLock”命令,从redis里删除这个key。
然后呢,另外的客户端2就可以尝试完成加锁了。
这就是所谓的分布式锁的开源Redisson框架的实现机制。
一般我们在生产系统中,可以用Redisson框架提供的这个类库来基于redis进行分布式锁的加锁与释放锁。
(6)上述Redis分布式锁的缺点
其实上面那种方案最大的问题,就是如果你对某个redis master实例,写入了myLock这种锁key的value,此时会异步复制给对应的master slave实例。
但是这个过程中一旦发生redis master宕机,主备切换,redis slave变为了redis master。
接着就会导致,客户端2来尝试加锁的时候,在新的redis master上完成了加锁,而客户端1也以为自己成功加了锁。
此时就会导致多个客户端对一个分布式锁完成了加锁。
这时系统在业务语义上一定会出现问题,导致各种脏数据的产生。
所以这个就是redis cluster,或者是redis master-slave架构的主从异步复制导致的redis分布式锁的最大缺陷:在redis master实例宕机的时候,可能导致多个客户端同时完成加锁。
免责声明:本文转载或采集自网络,版权归原作者所有。本网站刊发此文旨在传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及版权、内容等问题,请联系本网,我们将在第一时间删除。同时,本网站不对所刊发内容的准确性、真实性、完整性、及时性、原创性等进行保证,请读者仅作参考,并请自行核实相关内容。对于因使用或依赖本文内容所产生的任何直接或间接损失,本网站不承担任何责任。