用大文言轻松解读-提早信息机制-RocketMQ (用大文言轻松怎么说)
提早信息普通用于:提早发送信息,提早一段期间后才须要被处置的场景。比如:下单半小时后还未支付,则敞开订单监禁库存等。
RocketMQ的提早信息经常使用上十分方便,但是不允许恣意期间的提早,这一点关于有强制症的好友来说就比拟舒服,但是搞明确为什么这么设计后,就人造释怀了。
为什么RocketMQ不允许恣意期间的延时?为什么提早期间只能是从1s5s10s30s1m2m3m4m5m6m7m8m9m10m20m30m1h2h这些期间段里选?假设让你来设计RocketMQ的提早信息,你会怎样设计?本文从以上几个疑问聊聊RocketMQ的提早信息。
一、经常使用提早信息
RocketMQ不允许恣意期间的提早,只要18个等级的提早期间,自动是:1s5s10s30s1m2m3m4m5m6m7m8m9m10m20m30m1h2h。从头到尾共18个等级期间,s、m、h、d,区分示意秒、分、时、天。
自动的18个等级对应的期间可以修正,在broker.conf中参与如下性能,依据自身需求修正期间,而后重启broker。
messageDelayLevel=1s5s10s30s1m2m3m4m5m6m7m8m9m10m20m30m1h2h
RocketMQ发送提早信息只要要给信息设置提早期间级别setDelayTimeLevel。
DefaultMQProducerproducer=newDefaultMQProducer("TestProducerGroup");MessagerocketMsg=newMessage(topic,tags,payloads);//delayLevel=0时,无需提早if(delayLevel>0){rocketMsg.setDelayTimeLevel(delayLevel);}SendResultsendResult=producer.send(rocketMsg,timeout);
二、提早信息的原理
1.你会怎样设计
假设让你来设计RocketMQ的提早信息,你会怎样设计?笔者会这样设计:
2.粗略架构图
讲到这里,提早信息的架构图基本显现进去了:
3.RocketMQ的设计
实践上RocketMQ在设计提早信息时,跟上方的思绪基本相似,不在赘述,额外补充几点:
三、为什么不允许自定义延时期间
说到这里,预计你也能猜到,为什么不允许自定义提早期间了,外围要素还是性能疑问。
试想一下,假设设计成恣意期间,那么就无法能经常使用18个队列了,更无法能经常使用有限个队列了,只或者经常使用单个队列。
但是假设经常使用单个队列,依照先进先出的寄存的话,那出现须要后进先出的信息怎样办?那只能对整个队列启动排序,假设信息量很大,每次有信息出去都须要排序,那CPU必需会被玩爆。
而且队列里的信息被消费后,都会记载偏移量,假设每次有信息出去都要排序,那偏移量则失去意义,参与了信息失落的危险。
所以,RocketMQ的这种18个提早期间等级的设计,只管在提早期间的自在度上作出了斗争,但是基本满足业务,性能也很低劣。
四、总结
本文聊了RocketMQ提早信息的经常使用、原理、解答了局部不懂。外围概念:暂时Topic、目标Topic、定时义务、18个提早等级、18个信息队列。RocketMQ提早信息的设计方式,是一种统筹了性能和业务的低劣设计。
什么是消息中间件
问题一:消息中间件是什么?目前对消息中间件(MOM)的定义还未形成统一的行业标准,我国也正加快对消息中间件技术的标准化研究工作。 一般认为,消息中间件是一种由消息传送机制或消息队列模式组成的中间件技术,利用高效可靠的消息传递机制进行平台无关的数据交流,并基于数据通信来进行分布式系统的集成。 与其它中间件技术不同(例如ORB 和RPC),一般来说,消息中间件并不要求系统具备一个可靠的底部传输层,而是通过以消息的形式收发应用程序数据来连接运行于不同系统上的应用程序。 信息可以同步传送,也支持异步传送。 在异步方式下,应用程序并不需要消息即时即刻传送到对方,只是由MOM 确保把信息以鼎息的方式传送到适当的目的地,并且只传一次。 消息中间件属于中间件的一种,拥有中间件的主要特点,但是自身的工作机制又具有特殊性,主要特点包括以下6 个方面:(1)异步传送;(2)防御通信;(3)并发执行;(4)日志通信;(5)多种通信方式;(6)应用程序与网络复杂性相隔离。 问题二:消息中间件用在什么地方? 10分 消息中间件为应用系统提供高效、灵活的消息同步和异步传输处理、存储转发、可靠传输。 在大规模分布式环境下确保消息安全、可靠、高效送达。 特点: 1.分布式环境下,可靠、高效的消息传输 产品容错能力强,系统崩溃时不会导致消息丢失,确保关键业务数据的可靠传输;支持断点续传和消息流量控制,使消息引擎能够最大效率地利用网络传输能力。 2.多种集群方式,稳定高效 InforSuite MQ的若干节点可以组建为多种方式的群组,对外提供消息接收和处理功能。 当单个节点无法满足大负载的消息处理要求,可以使用集群功能将负载分配到多个节点上,提高系统的处理能力和可扩展性。 3.全方位的安全机制保障 产品提供多层次的安全管理功能,包括连接建立时的网络认证,消息传输时的安全性保证,有效保证了连接的合法性和私有数据的保密性。 一般都是银行类大系统,军工或者研究所的大项目,存在很多数据传输的时候需要,可以咨询国内的一些基础中间件公司,就那么几家,中创中间件、东方通中间件、金蝶等,可以多了解 问题三:java 消息中间件 在什么情况下使用消息中间件一般两个功能,解耦和异步处理,参考/s/blog_f0102uy79 问题四:消息中间件有哪些可与OA、ERP集成的免费消息中间件Active Messenger(简称AM)是一款非常实用的企业即时通讯软件。 系统提供免费的消息中间件(以组件的方式提供),开放给第三方程序使用。 目前比较典型的消息中间件包括IBM WebSphere MQSeries、Tibco TIB/Rendezvous和Microsoft MSMQ等。 问题五:java消息中间件有哪些ActiveMQ,是Apache出品,最流行的,能力强劲的开源消息总线。 ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,尽管JMS规范出台已经是很久的事情了,但是JMS在当今的J2EE应用中间仍然扮演着特殊的地位。 MetaQ,是一款完全的队列模型消息中间件,服务器使用Java语言编写,可在多种软硬件平台上部署。 客户端支持Java、C++编程语言。 单台服务器可支持1万以上个消息队列,通过扩容服务器,队列数几乎可任意横向扩展。 每个队列都是持久化、长度无限(取决于磁盘空间大小)、并且可从队列任意位置开始消费 问题六:消息中间件有哪些可与OA、ERP集成的免费消息中间件Active Messenger(简称AM)是一款非常实用的企业即时通讯软件。 系统提供免费的消息中间件(以组件的方式提供),开放给第三方程序使用。 目前比较典型的消息中间件包括IBM WebSphere MQSeries、Tibco TIB/Rendezvous和Microsoft MSMQ等。 问题七:怎么选择合适的开源消息中间件能选择的有三种: 1. ActiveMQ/ApolloMQ 优点:老牌的消息队列,使用Java语言编写。 对JMS支持最好,采用多线程并发,资源消耗比较大。 如果你的主语言是Java,可以重点考虑。 缺点:由于历史悠久,历史包袱较多,版本更新很缓慢。 集群模式需要依赖Zookeeper实现。 最新架构的产品被命名为Apollo,号称下一代ActiveMQ,目前案例较少。 2. RocketMQ/Kafka 优点:专为海量消息传递打造,主张使用拉模式,天然的集群、HA、负载均衡支持。 话说还是那句话,适合不适合看你有没有那么大的量。 缺点:所谓鱼和熊掌不可兼得,放弃了一些消息中间件的灵活性,使用的场景较窄,需关注你的业务模式是否契合,否则山寨变相使用很别扭。 除此之外,RocketMQ没有下的客户端可用。 RocketMQ身出名门,但使用者不多,生态较小,毕竟消息量能达到这种体量的公司不多,你也可以直接去购买阿里云的消息服务。 Kafka生态完善,其代码是用Scala语言写成,可靠性比RocketMQ低一些。 3. RabbitMQ 优点:生态丰富,使用者众,有很多人在前面踩坑。 AMQP协议的领导实现,支持多种场景。 淘宝的MySQL集群内部有使用它进行通讯,OpenStack开源云平台的通信组件,最先在金融行业得到运用。 缺点:Erlang代码你Hold得住不? 虽然Erlang是天然集群化的,但RabbitMQ在高可用方面做起来还不是特别得心应手,别相信广告。 问题八:什么是消息中间件,比如tonglink主要起什么作用TongLINK/Q(简称TLQ)的主要功能是在应用程序之间海供可靠的消息传送,这些消息可以在不同的网络协议、不同的计算机系统和不同的应用软件之间传递。 TongLINK/Q提供一个简单易用、高效可靠的分布式应用开发和运行平台,面向要求可靠消息(信息)传输的客户,即包括金融、电信、交通、能源、电子政务等高端客户,也包括大量中小企业客户。 中国中间件第一品牌东方通中间件
大型的 PHP应用 通常使用什么应用做 消息队列 的
一、消息队列概述消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题。 实现高性能,高可用,可伸缩和最终一致性架构。 是大型分布式系统不可缺少的中间件。 目前在生产环境,使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ等。 二、消息队列应用场景以下介绍消息队列在实际应用中常用的使用场景。 异步处理,应用解耦,流量削锋和消息通讯四个场景。 2.1异步处理场景说明:用户注册后,需要发注册邮件和注册短信。 传统的做法有两种1.串行的方式;2.并行方式。 (1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。 以上三个任务全部完成后,返回给客户端。 (架构KK,欢迎加入)(2)并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。 以上三个任务完成后,返回给客户端。 与串行的差别是,并行的方式可以提高处理的时间。 假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。 因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。 则串行方式1秒内CPU可处理的请求量是7次(1000/150)。 并行方式处理的请求量是10次(1000/100)。 小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。 如何解决这个问题呢?引入消息队列,将不是必须的业务逻辑,异步处理。 改造后的架构如下:按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。 注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。 因此架构改变后,系统的吞吐量提高到每秒20 QPS。 比串行提高了3倍,比并行提高了两倍。 2.2应用解耦场景说明:用户下单后,订单系统需要通知库存系统。 传统的做法是,订单系统调用库存系统的接口。 如下图:传统模式的缺点:1)假如库存系统无法访问,则订单减库存将失败,从而导致订单失败;2)订单系统与库存系统耦合;如何解决以上问题呢?引入应用消息队列后的方案,如下图:订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。 库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作。 假如:在下单时库存系统不能正常使用。 也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。 实现订单系统与库存系统的应用解耦。 2.3流量削锋流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。 应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。 为解决这个问题,一般需要在应用前端加入消息队列。 可以控制活动的人数;可以缓解短时间内高流量压垮应用;用户的请求,服务器接收后,首先写入消息队列。 假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面;秒杀业务根据消息队列中的请求信息,再做后续处理。 2.4日志处理日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。 架构简化如下:日志采集客户端,负责日志数据采集,定时写受写入Kafka队列;Kafka消息队列,负责日志数据的接收,存储和转发;日志处理应用:订阅并消费kafka队列中的日志数据;以下是新浪kafka日志处理应用案例:(1)Kafka:接收用户日志的消息队列。 (2)Logstash:做日志解析,统一成JSON输出给Elasticsearch。 (3)Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能。 (4)Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因。 2.5消息通讯消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。 比如实现点对点消息队列,或者聊天室等。 点对点通讯:客户端A和客户端B使用同一队列,进行消息通讯。 聊天室通讯:客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。 实现类似聊天室效果。 以上实际是消息队列的两种消息模式,点对点或发布订阅模式。 模型为示意图,供参考。 三、消息中间件示例3.1电商系统消息队列采用高可用,可持久化的消息中间件。 比如Active MQ,Rabbit MQ,Rocket Mq。 (1)应用将主干逻辑处理完成后,写入消息队列。 消息发送是否成功可以开启消息的确认模式。 (消息队列返回消息接收成功状态后,应用再返回,这样保障消息的完整性)(2)扩展流程(发短信,配送处理)订阅队列消息。 采用推或拉的方式获取消息并处理。 (3)消息将应用解耦的同时,带来了数据一致性问题,可以采用最终一致性方式解决。 比如主数据写入数据库,扩展应用根据消息队列,并结合数据库方式实现基于消息队列的后续处理。 3.2日志收集系统分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。 Zookeeper注册中心,提出负载均衡和地址查找服务;日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列;四、JMS消息服务讲消息队列就不得不提JMS 。 JMS(Java Message Service,Java消息服务)API是一个消息服务的标准/规范,允许应用程序组件基于JavaEE平台创建、发送、接收和读取消息。 它使分布式通信耦合度更低,消息服务更加可靠以及异步性。 在EJB架构中,有消息bean可以无缝的与JM消息服务集成。 在J2EE架构模式中,有消息服务者模式,用于实现消息与应用直接的解耦。 4.1消息模型在JMS标准中,有两种消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。 4.1.1 P2P模式P2P模式包含三个角色:消息队列(Queue),发送者(Sender),接收者(Receiver)。 每个消息都被发送到一个特定的队列,接收者从队列中获取消息。 队列保留着消息,直到他们被消费或超时。 P2P的特点每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行,它不会影响到消息被发送到队列接收者在成功接收消息之后需向队列应答成功如果希望发送的每个消息都会被成功处理的话,那么需要P2P模式。 (架构KK,欢迎加入)4.1.2 Pub/sub模式包含三个角色主题(Topic),发布者(Publisher),订阅者(Subscriber) 。 多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。 Pub/Sub的特点每个消息可以有多个消费者发布者和订阅者之间有时间上的依赖性。 针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息。 为了消费消息,订阅者必须保持运行的状态。 为了缓和这样严格的时间相关性,JMS允许订阅者创建一个可持久化的订阅。 这样,即使订阅者没有被激活(运行),它也能接收到发布者的消息。 如果希望发送的消息可以不被做任何处理、或者只被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型。 4.2消息消费在JMS中,消息的产生和消费都是异步的。 对于消费来说,JMS的消息者可以通过两种方式来消费消息。 (1)同步订阅者或接收者通过receive方法来接收消息,receive方法在接收到消息之前(或超时之前)将一直阻塞;(2)异步订阅者或接收者可以注册为一个消息监听器。 当消息到达之后,系统自动调用监听器的onMessage方法。 JNDI:Java命名和目录接口,是一种标准的Java命名系统接口。 可以在网络上查找和访问服务。 通过指定一个资源名称,该名称对应于数据库或命名服务中的一个记录,同时返回资源连接建立所必须的信息。 JNDI在JMS中起到查找和访问发送目标或消息来源的作用。 (架构KK,欢迎加入)4.3JMS编程模型(1) ConnectionFactory创建Connection对象的工厂,针对两种不同的jms消息模型,分别有QueueConnectionFactory和TopicConnectionFactory两种。 可以通过JNDI来查找ConnectionFactory对象。 (2) DestinationDestination的意思是消息生产者的消息发送目标或者说消息消费者的消息来源。 对于消息生产者来说,它的Destination是某个队列(Queue)或某个主题(Topic);对于消息消费者来说,它的Destination也是某个队列或主题(即消息来源)。 所以,Destination实际上就是两种类型的对象:Queue、Topic可以通过JNDI来查找Destination。 (3) ConnectionConnection表示在客户端和JMS系统之间建立的链接(对TCP/IP socket的包装)。 Connection可以产生一个或多个Session。 跟ConnectionFactory一样,Connection也有两种类型:QueueConnection和TopicConnection。 (4) SessionSession是操作消息的接口。 可以通过session创建生产者、消费者、消息等。 Session提供了事务的功能。 当需要使用session发送/接收多个消息时,可以将这些发送/接收动作放到一个事务中。 同样,也分QueueSession和TopicSession。 (5) 消息的生产者消息生产者由Session创建,并用于将消息发送到Destination。 同样,消息生产者分两种类型:QueueSender和TopicPublisher。 可以调用消息生产者的方法(send或publish方法)发送消息。 (6) 消息消费者消息消费者由Session创建,用于接收被发送到Destination的消息。 两种类型:QueueReceiver和TopicSubscriber。 可分别通过session的createReceiver(Queue)或createSubscriber(Topic)来创建。 当然,也可以session的creatDurableSubscriber方法来创建持久化的订阅者。 (7) MessageListener消息监听器。 如果注册了消息监听器,一旦消息到达,将自动调用监听器的onMessage方法。 EJB中的MDB(Message-Driven Bean)就是一种MessageListener。 深入学习JMS对掌握JAVA架构,EJB架构有很好的帮助,消息中间件也是大型分布式系统必须的组件。 本次分享主要做全局性介绍,具体的深入需要大家学习,实践,总结,领会。 五、常用消息队列一般商用的容器,比如WebLogic,JBoss,都支持JMS标准,开发上很方便。 但免费的比如Tomcat,Jetty等则需要使用第三方的消息中间件。 本部分内容介绍常用的消息中间件(Active MQ,Rabbit MQ,Zero MQ,Kafka)以及他们的特点。 5.1 ActiveMQActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线。 ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,尽管JMS规范出台已经是很久的事情了,但是JMS在当今的J2EE应用中间仍然扮演着特殊的地位。 ActiveMQ特性如下:⒈ 多种语言和协议编写客户端。 语言: Java,C,C++,C#,Ruby,Perl,Python,PHP。 应用协议: OpenWire,Stomp REST,WS Notification,XMPP,AMQP⒉ 完全支持JMS1.1和J2EE 1.4规范 (持久化,XA消息,事务)⒊ 对spring的支持,ActiveMQ可以很容易内嵌到使用Spring的系统里面去,而且也支持Spring2.0的特性⒋ 通过了常见J2EE服务器(如 Geronimo,JBoss 4,GlassFish,WebLogic)的测试,其中通过JCA 1.5 resource adaptors的配置,可以让ActiveMQ可以自动的部署到任何兼容J2EE 1.4 商业服务器上⒌ 支持多种传送协议:in-VM,TCP,SSL,NIO,UDP,JGroups,JXTA⒍ 支持通过JDBC和journal提供高速的消息持久化⒎ 从设计上保证了高性能的集群,客户端-服务器,点对点⒏ 支持Ajax⒐ 支持与Axis的整合⒑ 可以很容易得调用内嵌JMS provider,进行测试5.2 RabbitMQRabbitMQ是流行的开源消息队列系统,用erlang语言开发。 RabbitMQ是AMQP(高级消息队列协议)的标准实现。 支持多种客户端,如:Python、Ruby、、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等,支持AJAX,持久化。 用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。 几个重要概念:Broker:简单来说就是消息队列服务器实体。 Exchange:消息交换机,它指定消息按什么规则,路由到哪个队列。 Queue:消息队列载体,每个消息都会被投入到一个或多个队列。 Binding:绑定,它的作用就是把exchange和queue按照路由规则绑定起来。 Routing Key:路由关键字,exchange根据这个关键字进行消息投递。 vhost:虚拟主机,一个broker里可以开设多个vhost,用作不同用户的权限分离。 producer:消息生产者,就是投递消息的程序。 consumer:消息消费者,就是接受消息的程序。 channel:消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务。 消息队列的使用过程,如下:(1)客户端连接到消息队列服务器,打开一个channel。 (2)客户端声明一个exchange,并设置相关属性。 (3)客户端声明一个queue,并设置相关属性。 (4)客户端使用routing key,在exchange和queue之间建立好绑定关系。 (5)客户端投递消息到exchange。 exchange接收到消息后,就根据消息的key和已经设置的binding,进行消息路由,将消息投递到一个或多个队列里。 5.3 ZeroMQ号称史上最快的消息队列,它实际类似于Socket的一系列接口,他跟Socket的区别是:普通的socket是端到端的(1:1的关系),而ZMQ却是可以N:M 的关系,人们对BSD套接字的了解较多的是点对点的连接,点对点连接需要显式地建立连接、销毁连接、选择协议(TCP/UDP)和处理错误等,而ZMQ屏蔽了这些细节,让你的网络编程更为简单。 ZMQ用于node与node间的通信,node可以是主机或者是进程。 引用官方的说法: “ZMQ(以下ZeroMQ简称ZMQ)是一个简单好用的传输层,像框架一样的一个socket library,他使得Socket编程更加简单、简洁和性能更高。 是一个消息处理队列库,可在多个线程、内核和主机盒之间弹性伸缩。 ZMQ的明确目标是“成为标准网络协议栈的一部分,之后进入Linux内核”。 现在还未看到它们的成功。 但是,它无疑是极具前景的、并且是人们更加需要的“传统”BSD套接字之上的一 层封装。 ZMQ让编写高性能网络应用程序极为简单和有趣。 ”特点是:高性能,非持久化;跨平台:支持Linux、Windows、OS X等。 多语言支持; C、C++、Java、、Python等30多种开发语言。 可单独部署或集成到应用中使用;可作为Socket通信库使用。 与RabbitMQ相比,ZMQ并不像是一个传统意义上的消息队列服务器,事实上,它也根本不是一个服务器,更像一个底层的网络通讯库,在Socket API之上做了一层封装,将网络通讯、进程通讯和线程通讯抽象为统一的API接口。 支持“Request-Reply “,”Publisher-Subscriber“,”Parallel Pipeline”三种基本模型和扩展模型。 ZeroMQ高性能设计要点:1、无锁的队列模型对于跨线程间的交互(用户端和session)之间的数据交换通道pipe,采用无锁的队列算法CAS;在pipe两端注册有异步事件,在读或者写消息到pipe的时,会自动触发读写事件。 2、批量处理的算法对于传统的消息处理,每个消息在发送和接收的时候,都需要系统的调用,这样对于大量的消息,系统的开销比较大,zeroMQ对于批量的消息,进行了适应性的优化,可以批量的接收和发送消息。 3、多核下的线程绑定,无须CPU切换区别于传统的多线程并发模式,信号量或者临界区, zeroMQ充分利用多核的优势,每个核绑定运行一个工作者线程,避免多线程之间的CPU切换开销。 5.4 KafkaKafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。 Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群机来提供实时的消费。 Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。 (文件追加的方式写入数据,过期的数据定期删除)高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。 支持通过Kafka服务器和消费机集群来分区消息。 支持Hadoop并行数据加载。 Kafka相关概念BrokerKafka集群包含一个或多个服务器,这种服务器被称为broker[5]Topic每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。 (物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)PartitionParition是物理上的概念,每个Topic包含一个或多个负责发布消息到Kafka brokerConsumer消息消费者,向Kafka broker读取消息的客户端。 Consumer Group每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。 一般应用在大数据日志处理或对实时性(少量延迟),可靠性(少量丢数据)要求稍低的场景使用。
免责声明:本文转载或采集自网络,版权归原作者所有。本网站刊发此文旨在传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及版权、内容等问题,请联系本网,我们将在第一时间删除。同时,本网站不对所刊发内容的准确性、真实性、完整性、及时性、原创性等进行保证,请读者仅作参考,并请自行核实相关内容。对于因使用或依赖本文内容所产生的任何直接或间接损失,本网站不承担任何责任。