当前位置:首页 > 数码 > 不会取代代码农的理由-大语言模型 (不会取代代码怎么办)

不会取代代码农的理由-大语言模型 (不会取代代码怎么办)

admin7个月前 (04-14)数码44

引言

随着生成式人工智能(GenAI)的兴起,程序员的未来变得扑朔迷离。一些人认为GenAI将取代人类程序员,而另一些人则认为它将增强人类的能力。本文将探讨GenAI对软件开发的影响,并探究程序员在GenAI时代的前景。

GenAI的局限性

尽管GenAI在代码生成方面取得了显著进展,但它仍然存在着一些局限性。

规模过于庞大

最大的GenAI模型,例如OpenAI的GPT-3和Google的LaMDA,拥有数万亿个参数。虽然这为它们提供了处理复杂任务的能力,但也带来了严重的效率问题。这些模型需要大量的计算资源,并且它们的庞大规模会让它们难以用于实际应用程序。

缺乏可信度

另一个GenAI面临的重大挑战是可信度。这些模型是在大量未标记的互联网数据上进行训练的,这会导致幻觉和错误信息。对于应用程序的安全性、稳定性和可靠性至关重要的任务,无法信任GenAI生成的代码。

面向编码的LLM

为了应对GenAI的局限性,出现了面向编码的更小、更专门化的LLM。

CodeLlama

Meta最近推出的CodeLlama是一个面向编码的LLM,旨在克服传统GenAI模型的挑战。它使用5000亿个代码token进行训练,并且具有专门针对Python编程设计的版本。CodeLlama的较小规模使其更易于部署和使用,并且它的定制培训使其对代码生成更有针对性。

StarCoder

StarCoder是一个仅拥有155亿个参数的LLM,但在评估基准中却优于超大LLM。这表明,对于某些任务,较小的、更专注的LLM可能比更大、更通用的模型更有效。

GenAI与程序员的未来

尽管存在局限性,但GenAI仍然对软件开发有着深远的影响。它为以下方面创造了新的可能性:

增强程序员的能力

GenAI可以作为程序员的助手,自动完成重复性的任务并生成代码建议。通过释放程序员的时间,他们可以专注于更高水平的战略和创意工作。

自动化代码生成

GenAI可以自动生成代码,从而节省时间并提高开发效率。这对于快速原型制作、自动化测试和创建复杂的算法特别有用。

创造新的开发模式

GenAI正在创造新的开发模式,例如无代码和低代码编程。这使没有编程经验的人能够创建功能齐全的应用程序,从而扩大了技术创新的潜力。

结论

GenAI不会取代人类程序员,但它将继续塑造软件开发的未来。通过克服其局限性并专注于特定的用例,面向编码的LLM有可能成为程序员不可或缺的工具。程序员必须适应不断变化的技术格局,并在不断发展的GenAI领域提升自己的技能,以保持相关性和竞争力。


如何看待大语言模型对于我们的影响

影响有积极的,也有潜在的挑战和风险。 大语言模型提供了一种高效、便捷的信息获取和交流方式。 通过自然语言处理技术,用户可以轻松地与机器进行对话,获取各种信息,这大大提高了信息获取的效率和便利性。 大语言模型需要大量的数据进行训练和学习,这涉及到数据隐私和安全的问题。 如果数据没有得到妥善的保护和管理,就会导致数据泄露和滥用,给用户带来损失。

具身智能时代呼唤“端到端”

“随着模型能力的迭代,以及模型从语言模型逐渐变成一个加上生成、多模态理解的能力,相信在今年年底、明年可能会期待有质变的产生,从务实的角度来看,大模型目前阶段只是一个初步的阶段。”

文丨智驾网 王欣

一辆搭载着FSD V12.3.1 Beta的特斯拉穿梭在旧金山市闹区的傍晚,依靠纯视觉端到端的方案完成了从车位驶出到目的地停靠路边的丝滑操作。

不会取代代码农的理由

马斯克几乎会以每两周的节奏对FSD进行一次“大改”,直到这次FSD V12.3.1 Beta的更新。

3月25日,马斯克向全体特斯拉员工发了一封邮件,要求必须为北美地区提车的客户展示并安装激活FSD V12.3.1 Beta,并在交车前让客户进行短暂的试驾。希望让人们意识到FSD确实有效。

紧接着,马斯克又随即公布特斯拉基于纯视觉方案的端到端自动驾驶泊车功能将在这几日推送,在Twitter上对FSD不惜溢美之词的进行宣扬:开特斯拉用FSD,几乎哪儿都能去。

新版本发布后,海外媒体平台充斥着该版本的测试视频,不少网友对FSD V12.3.1在北美城市道路中的驾驶能力表达了赞叹:Tahts so cool!

作为引领自动驾驶风向标的特斯拉,已经将端到端自动驾驶的热流从北美流入了国内,又从舆论场的角逐带到了今年3月15日-17日召开的电动汽车百人会的产业演讲中来(以下简称:百人会)。

端到端的风暴,在中国正式打响了“第一枪“。

纯视觉在端到端中的“AB”面

随着高速NOA走向城市NOA,自动驾驶系统的复杂程度在大幅提升,数百万行的C++代码对人工编写规则方式带来巨大的成本。

这时,完全基于人工智能和神经网络的感知模块不会存在因为手动编写规则引发效率低下的困惑,所以现如今的行业风向走到基于大模型的端到端自动驾驶。

多家企业在今年百人会论坛中亮相了行业成果的殊荣,各家对于感知的技术路线看法也各有千秋。

去年,商汤的端到端自动驾驶大模型UniAD入选了2023年CVPR最佳优秀论文。

绝影是商汤智能汽车的板块,商汤绝影智能汽车事业群总裁王晓刚在百人会上表示:“端到端的自动驾驶UniAD,是今年我们自动驾驶最大的突破,从高速到城区的领航,在这里可以看到场景日益复杂,需要大量的工程师每天去解决层出不穷的各种case。端到端自动驾驶是数据驱动,能够为我们高效地解决城区的领航,提供更加高效实践的路径。”

与传统的的单模态模型相比,多模态大模型的优点在于它可以从多个数据源中获得更丰富的信息,从而提高模型的性能和鲁棒性。

王晓刚还提到,商汤进一步提出了多模态大模型自动驾驶方案,这种方案的输入,除了各种感知传感器,系统的信息以外,还允许人机交互,通过自然语言作为输入。当自动驾驶时觉得旁边大车有压迫感,如果想要离它远一点,或者想超车,都是可以通过语言模型进行交互。

另外,输出的时候不但可以输出感知,还可以输出规控,还可以对自动驾驶做出的决策有解释性。

毫末智行CEO顾维灏也发表了对多模态大模型的看法,基于毫末的的DriveGPT,顾维灏表示,DriveGPT最核心的能力是基于持续的多模态的视觉识别大模型。

“我们把它用Token化的表达方式进行训练,再进行三维化,这是我们做大模型很重要的技术基础。”

DriveGPT是毫末智行研发的垂直领域大模型,在视觉大模型基础上,毫末又构建了多模态大模型,用以实现感知万物识别的能力。

顾维灏表示:“多模态放到视觉大模型里面,就会让视觉三维的渲染、标注、识别,能够提前自动化地理解这个照片里面,或者是说前融合后的数据里面究竟这个桌子和讲台是怎么样来分割的,所以加入了多模态大模型。在认知模型里面,我们又加入了大语言的模型。大语言模型它不仅仅是自然的交互,它还有很多知识的理解。”

网络和火山更强调座舱大模型,共识是:认为座舱大模型天生是多模态的场景。

网络的语音和大模型的一体化方案已经在极越车上落地,网络智能云汽车行业解决方案总经理肖猛认为,2024年是座舱大模型的元年。

同时,极越还是目前国内唯一采用纯视觉自动驾驶方案落地的车企,基于网络Apollo纯视觉高阶智驾能力和安全体系赋能,极越完成OCC(Occupancy Network,占用网络)升级,已形成“B.O.T”(BEV+OCC+Transformer)完整技术体系。

与传统的视觉方案相比,OCC的一个显著优势在于它能够处理未知或不常见的物体,降低了因未识别物体而可能引发的意外情况的风险。OCC还能够以厘米级的精度对障碍物进行三维建模。

3月26日,极越在其AI DAY2024技术大会上,发布了OTA V1.4.0新版软件,升级涉及智能驾驶、智能座舱、智能互联、三电等诸多领域,共计升级200多项功能。

当OCC对应在PPA(点到点领航辅助)功能上,就能使车辆拥有更合理的路线规划,并实现更流畅的变道和绕行。

火山引擎汽车行业总经理杨立伟在谈到大模型在各个行业应用时,发现汽车行业一个非常大的特点。

他表示:“手机目前交互形态还是基于触摸屏幕,通过屏幕来交互的产品形态,所以这也是为什么我们看Siri和手机里面的语音助手做的不好,我相信座舱内有非常便利的空间,目前没有大模型的时候,我们座舱的语音交互的时长和频率已经非常高,座舱是天生多模态的场景,机器想要跟人有互动更好,大模型更像一个人机交互的操作系统和人机交互的智能品。这样的话没有多模态的能力是不行的。”

端到端是自动驾驶研究和开发领域的一个活跃研究方向,这是不争的事实,但端到端自动驾驶技术尚未成熟,跟随特斯拉FSD V12的后来者虽多,但对于任何一家具备研发自动驾驶技术能力的企业来说,光是从普通架构切换到端到端技术的单项成本就颇高。

杨立伟坦诚地表达了这一观点:大模型现在在整个汽车行业的应用还是偏早期阶段。“刚才我们还在讨论,目前是量的提升,没有到质变,随着模型能力的迭代,以及模型从语言模型逐渐变成一个加上生成、加上多模态理解的能力,我相信在今年年底、明年可能会期待有质变的产生,从务实的角度来看,大模型目前阶段只是一个初步的阶段。”

感知固然重要,它提供了必要的信息输入,是司机的“眼睛与耳朵”,与它同样重要的,还有被业界及科研机构不断研究的认知,涉及到规划、决策和应对复杂或紧急情况的能力,相当于司机的“大脑”。

而只有当大模型作为自动驾驶的驾驶员,在认知层面远超于人类时,才能做出超出人类的决策能力,这时,感知、认知会不断迭代,甚至超出人类认知的上限,自动驾驶才会迎来真正所谓的GPT、IPhone时刻。

北京大学计算机学院教授黄铁军在百人会上对当下自动驾驶发展阶段进行了总结:

第一个阶段:只关心感知精度,缺乏认知的阶段,现在大部分车还处于这一阶段,就是L2、L3还很难,因为你只关心感知,不关心认知,这是肯定有问题的。

第二个阶段:特斯拉的FSD,但是他也不是真正的大模型,他只是用了Transformer,还是学人类的驾驶行为。但未来一定是对世界的深度认知,加上很强感知的时代。

不过目前,基于纯视觉方案的端到端自动驾驶,仍被很多主机厂认为是跨越鸿沟的必经之路。

因为不需要大量的人工策略、只需要采集足够多的优质驾驶数据来训练即可,可以通过规模化的方式不断扩展数据来不断提升系统的能力上限。

但这种简单也隐藏了巨大风险。

完全基于视觉的端到端自动驾驶不具备传统自动驾驶系统的“透明性”,传统自动驾驶即模块化方法,端到端自动驾驶是一体化方法,不产生中间结果,直接通过图像输入,直接输出控制信号,但这种技术路线也存在彻底黑盒,解释性差的问题。

同时,端到端模型的训练需要处理大量的数据,包括多模态视觉数据和车辆控制信号等。

当大模型训练的“暴力美学”应用在自动驾驶上

端到端可以类比做GPT-4语言模型,通过收集海量的数据加上训练而实现的。

以特斯拉为例,通过遍布全球的几百万辆量产车,可以采集到足够丰富、足够多样的数据,再从中选出高质量数据,在云端使用数万张GPU、以及自研的DOJO进行训练和验证,使得端到端自动驾驶能够从paper变成product。

OpenAI的秘诀一直以来是屡试不爽的Scaling Law——当数据和算力足够多,足够大,就会产生智能涌现的能力。

直到Scaling Law在这次百人会中被诸多次提及,意味着自动驾驶的成熟需要“暴力美学”来催化,而背后是高昂的算力支出来支撑。

黄铁军在百人会上明确强调了大模型未来超越人类的关键不是靠概率,靠的正是对海量语料,数据背后精确的理解。

顾维灏表示,伴随着人工智能和大模型的发展,自动驾驶迎来了第三个阶段:数据驱动的时代。

或许可以这么理解:大部分代码都不是工程师来写,这些工程师从第二个阶段的“软件驱动的时代”来到了第三个阶段的“数据驱动时代”,解放了过去写软件的双手,所有的工程师都是在准备数据、准备环境、训练模型、检验最后的结果、调整结构、调整参数等工作。

最近一段时间的发展,顾维灏认为或许是自动驾驶的3.0时代。“每一个时代里面的感知、认知和模型是什么样方式来实现的,都完全不一样。”他说。

智能驾驶1.0 时代,是以硬件驱动为主;2.0 时代,是以软件驱动为主;3.0 时代,则是数据驱动为主的大模型时代。

“端到端一定是未来很重要的方向,但它不会这么快到来,”顾维灏表示。他认为还需要几年的发展。“把过去的离散的部分逐渐地聚集化、模型化,把感知的模型聚集到一块,把认知的模型聚集到一块,控制的模型聚集到一块,然后再来实践车端模型和云端模型的联动。”

在 3.0 时代中,顾维灏指出端到端是最重要的方向,目前行业的发展趋势是一个从分散到聚集的过程。

在谈到算力需求时,王晓刚认为,过去发展的过程当中,从2012年AlexNet出现,深度学习神经网络大规模的应用,对于算力的需求是上千倍的提升。随着ChatGPT、GPT-4,甚至更大规模的大模型,我们有上亿倍算力需求的提升。

如何分配技术和下一代技术算力的精力、资源也是一针见血的问题。

网络智能驾驶事业群组首席研发架构师王亮在百人会活动上接受媒体采访时透露:“我们选择纯视觉路线,放弃了激光雷达把它拿掉也是资源的原因。我们希望把所有算力、数据、处理资源、人才、模型参数规模都给到纯视觉</stron

免责声明:本文转载或采集自网络,版权归原作者所有。本网站刊发此文旨在传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及版权、内容等问题,请联系本网,我们将在第一时间删除。同时,本网站不对所刊发内容的准确性、真实性、完整性、及时性、原创性等进行保证,请读者仅作参考,并请自行核实相关内容。对于因使用或依赖本文内容所产生的任何直接或间接损失,本网站不承担任何责任。

标签: 大语言模型

“不会取代代码农的理由-大语言模型 (不会取代代码怎么办)” 的相关文章

层数的必要性探究-大语言模型 (层数的必要性和重要性)

层数的必要性探究-大语言模型 (层数的必要性和重要性)

大语言模型:规模是否重要? 引言 近年来,大语言模型(LLM)已成为自然语言处理领域的主导力量。这些模型以其在各种任务上的卓越表现给人们留下了深刻的印象,包括语言生成、翻译和问答。LLM的巨大规模...

应对日益严峻的大语言模型数据泄露风险-Agent-借助超自动化 (应对日益严峻的能源安全挑战各国应进一步协调能源政策)

应对日益严峻的大语言模型数据泄露风险-Agent-借助超自动化 (应对日益严峻的能源安全挑战各国应进一步协调能源政策)

大语言模型(LLM)因其强大的文本生成和处理能力而备受关注,但其应用也面临着重大的数据安全隐患。 数据泄露的危害 数据泄露对企业的影响不容小觑,可能造成以下后果: 信任度降...

ChatGPT-多级内存管理-等大语言模型的上下文限制-突破-无限上下文 (chatgpt)

ChatGPT-多级内存管理-等大语言模型的上下文限制-突破-无限上下文 (chatgpt)

MemGPT:突破大语言模型上下文限制的技术创新 简介 目前流行的大语言模型(LLM),如Open AI的ChatGPT、谷歌的Llama2和百度文心一言,均受到技术架构的限制,导致上下文输入受...